Soft Computing for Recognition based on Biometrics - download pdf or read online

By Patricia Melin, Witold Pedrycz

ISBN-10: 3642151108

ISBN-13: 9783642151101

We describe during this booklet, bio-inspired types and purposes of hybrid clever platforms utilizing delicate computing options for picture research and development reputation in accordance with biometrics and different details resources. gentle Computing (SC) includes a number of clever computing paradigms, together with fuzzy common sense, neural networks, and bio-inspired optimization algo-rithms, that are used to supply strong hybrid clever platforms. The e-book is geared up in 5 major elements, which comprise a bunch of papers round an identical topic.

Show description

Read Online or Download Soft Computing for Recognition based on Biometrics PDF

Best products books

New PDF release: Robust Control Design Using H Methods

This e-book presents a unified number of very important, contemporary effects for the layout of sturdy controllers for doubtful platforms. lots of the effects offered are in keeping with H¿ keep an eye on conception, or its stochastic counterpart, chance delicate keep an eye on thought. important to the philosophy of the e-book is the idea of an doubtful method.

New PDF release: Betriebsfestigkeit : verfahren und daten zur

Das Bemessungskonzept "Betriebsfestigkeit" verfolgt das Ziel, Maschinen, Fahrzeuge oder andere Konstruktionen gegen zeitlich veränderliche Betriebslasten unter Berücksichtigung ihrer Umgebungsbedingungen für eine bestimmte Nutzungsdauer zuverlässig bemessen zu können. Ingenieure, Wissenschaftler und Studenten finden in diesem Buch die experimentellen Grundlagen sowie erprobte und neuere Rechenverfahren der Betriebsfestigkeit für eine ingenieurmäßige Anwendung.

New PDF release: Methode der Dimensionsreduktion in Kontaktmechanik und

Das Werk beschreibt erstmalig in einer geschlossenen shape eine Simulationsmethode zur schnellen Berechnung von Kontakteigenschaften und Reibung zwischen rauen Oberflächen. Im Unterschied zu bestehenden Simulationsverfahren basiert die Methode der Dimensionsreduktion (MDR) auf einer exakten Abbildung verschiedener Klassen von dreidimensionalen Kontaktproblemen auf Kontakte mit eindimensionalen Bettungen.

Download PDF by Michael Piggott: Load-Bearing Fibre Composites

This can be a thoroughgoing revision and enlargement of the sooner ebook, bringing it brand new with the most recent study. The older rules are offered besides the recent, and the experimental facts is given in define, and entirely referenced. the place sensible, illustrations are selected from key works and the resource reference is given within the subtitle as within the first version.

Additional info for Soft Computing for Recognition based on Biometrics

Sample text

The kernel is related to the Ø function by: K ( xi , x) = φ ( xi ) ⋅ φ ( x) (21) In this work the radial basis function (RBF) was used. RBF is defined as: K ( xi , x j ) = e − xi − x j 2 σ (22) Classification of the test sample x is then performed by: ⎛ N ⎞ y = sign ⎜ ∑ α i vi K ( xi , x) + b ⎟ , ⎝ i=1 ⎠ where N is the number of training samples, (23) vi is the class label, αi a Lagrangian multiplier, the elements xi for which αi>0 are the support vectors, and K(xi,x) is the function kernel. In this work a Gaussian radial basis function was used.

The fuzzy algorithm is similar to the crisp version in the sense that it must also search the labeled sample set for the k-nearest neighbors. Beyond obtaining these k samples, the procedures differ considerably [17]. , xn } be the set of n labeled samples. Also let ui (x) be the assigned membership of the vector x (to be computed), and uij be the membership in the ith class of the jth vector of the labeled sample set. The algorithm is as follows: BEGIN Input x, of unknown classification. Set K,1 ≤ K ≤ n.

Compute the output of the ANN, denoted by yp, by propagating each input pattern xp through the network in a forward direction. 3. - Compute the error between the desired output, d, and the output produced by the ANN y, this is given by Ep = 1 (d p ln − d p ln ) 2 . 2 4. - Adjust the connection weights according to the following rule, 44 E. Ramírez, O. Castillo, and J. Soria Wln[ t +1] = Wln[ t ] + βδ p ln x pl (1) In the above equation ߚ represents the learning rate, a parameter that is used to modulate the amount by which the connection weights can be modified at each iteration of the algorithm.

Download PDF sample

Soft Computing for Recognition based on Biometrics by Patricia Melin, Witold Pedrycz

by Mark

Rated 4.77 of 5 – based on 43 votes